Stable Computation of Differentiation Matrices and Scattered Node Stencils Based on Gaussian Radial Basis Functions
نویسندگان
چکیده
Abstract. Radial basis function (RBF) approximation has the potential to provide spectrally accurate function approximations for data given at scattered node locations. For smooth solutions, the best accuracy for a given number of node points is typically achieved when the basis functions are scaled to be nearly flat. This also results in nearly linearly dependent basis functions and severe ill-conditioning of the interpolation matrices. Fornberg, Larsson, and Flyer recently generalized the RBF-QR method to provide a numerically stable approach to interpolation with flat and nearly flat Gaussian RBFs for arbitrary node sets in up to three dimensions. In this work, we consider how to extend this method to the task of computing differentiation matrices and stencil weights in order to solve partial differential equations. The expressions for first and second order derivative operators as well as hyperviscosity operators are established, numerical issues such as how to deal with non-unisolvency are resolved, and the accuracy and computational efficiency of the method are tested numerically. The results indicate that using the RBF-QR approach for solving PDE problems can be very competitive compared with using the ill-conditioned direct solution approach or using variable precision arithmetic to overcome the conditioning issue.
منابع مشابه
Stable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملScattered Node Mehrstellenverfahren-type Formulas Generated from Radial Basis Functions
In standard equispaced finite difference (FD) formulas, symmetries can make the order of accuracy relatively high compared to the number of nodes in the FD stencil. With scattered nodes, such symmetries are no longer available. Thus, the number of nodes in the stencils can be relatively large compared to the resulting accuracy. The generalization of mehrstellenverfahren (compact) FD (CFD) formu...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملAdaptive meshless centres and RBF stencils for Poisson equation
We consider adaptive meshless discretisation of the Dirichlet problem for Poisson equation based on numerical differentiation stencils obtained with the help of radial basis functions. New meshless stencil selection and adaptive refinement algorithms are proposed in 2D. Numerical experiments show that the accuracy of the solution is comparable with, and often better than that achieved by the me...
متن کاملEigenvalue stability of radial basis function discretizations for time-dependent problems
Differentiation matrices obtained with infinitely smooth radial basis function (RBF) collocation methods have, under many conditions, eigenvalues with positive real part, preventing the use of such methods for time-dependent problems. We explore this difficulty at theoretical and practical levels. Theoretically, we prove that differentiation matrices for conditionally positive definite RBFs are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 35 شماره
صفحات -
تاریخ انتشار 2013